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Abstract
Recently proposed Story Cloze Test [Mostafazadeh
et al., 2016] is a commonsense machine compre-
hension application to deal with natural language
understanding problem. This dataset contains a lot
of story tests which require commonsense infer-
ence ability. Unfortunately, the training data is al-
most unsupervised where each context document
followed with only one positive sentence that can
be inferred from the context. However, in the test-
ing period, we must make inference from two can-
didate sentences. To tackle this problem, we em-
ploy the generative adversarial networks (GANs) to
generate fake sentence. We proposed a Conditional
GANs (CGANs) in which the generator is condi-
tioned by the context. Our experiments show the
advantage of the CGANs in discriminating sen-
tence and achieve state-of-the-art results in com-
monsense story reading comprehension task com-
pared with previous feature engineering and deep
learning methods.

1 Introduction
Machine comprehension (MC) is one of the primary goals
in Artificial Intelligence and Natural Language Processing
(NLP). Commonly, MC requires two types of ability. Re-
trieval: The system needs to find answers from related doc-
uments or knowledge bases, and questions in this type of
MC sometimes are factoid such as ‘Who, Where, When’ etc.
Some MC datasets and evaluations have been proposed fo-
cusing on this type of task, for example, CNN/Daily Mail
[Hermann et al., 2015] and Children Book Test [Hill et al.,
2015] where one must fill a noun in a cloze style sentence
based on the context; Or SQuAD [Rajpurkar et al., 2016] and
NewsQA [Trischler et al., 2016] where the answer contains
multiple words. Inference: the system needs to find clues in
the documents and make inference based on them. This type
of questions are sometimes non-factoid such as ‘Why, How’;
MCTest [Richardson et al., 2013] is a typical dataset where
more than half of the questions are multi-sentence-supported
and we must make inference among multiple sentences; Story
Cloze Test (SCT) [Mostafazadeh et al., 2016] is a recently
proposed MC task which consists of a lot of human-created

stories, each story consists of 5 sentences that capture a vari-
ety of causal and temporal relations between everyday events
and enables learning narrative structures across a range of
events rather than a single domain or genre. The sentence in
SCT are highly recapitulative, an example of SCT story is
shown in Figure 1.

SCT contains a lot of entailments that can not be di-
rectly inferred from the text, for example, given ‘The room
is out of power’, one can not directly infer ‘he light up a
candle’ just from the text evidence, so the inference from
implicit commonsense knowledge is necessary. Traditional
feature engineering methods which utilize shallow linguis-
tic features may not capture this type of patterns, a host of
baselines based on shallow language understanding strug-
gle to achieve a high score on this dataset [Mostafazadeh
et al., 2016]. Recent years deep-learning architectures have
shown great advantage in representing the meaning of word
and sentence, and achieved good results in many NLP infer-
ence tasks such as question answering [Hermann et al., 2015;
Seo et al., 2016], recognizing textual entailments [Bowman
et al., 2016] and answer selection [Santos et al., 2016]. How-
ever, the SCT training data only contains the positive exam-
ples that makes the standard discriminative neural networks
based systems hard to apply.

To generate negative sentences that can make a discrim-
inative classifier available, in this work we use the genera-
tive adversarial networks (GANs) [Goodfellow et al., 2014],
a generative framework under an adversarial process to gen-
erate the negative examples. In GANs two types of models
are trained simultaneously: a generative model G to estimate
the data distribution from random noise and generate a fake
sample, and a discriminative modelD to discriminate the real
sample from the fake one. GANs corresponds to a minimax
two-player game where there exists a unique solution that G
recovers the data distribution andD equals to 1/2 everywhere,
and this training process results in an optimal D that could
discriminate the real target from the wrong one. In our task
the generated sentence is not independent but conditioned on
the contextual 4 sentences, so we modify the generator that
the hidden variables are not only drawn from random noise
but also the representation of the context (so we name our
model conditional GANs). The discriminator is made up of
three parts: a long-short-term-memory recurrent neural net-
works (LSTM-RNN) model [Hochreiter and Schmidhuber,



Billy's car broke down on the highway.
He looked under the hood and realized his starter was broken.
The nearest mechanic quoted Billy 300 dollars, which was far too much.
He instead called a friend who came and fixed the starter for $100.
Billy drove away happily with a functioning engine.

Training Story

Maxine usually hates to shave her legs.
She doesn't like the feeling of using a razor.
One night Maxine has a big date and decides to wear a dress.
She shaves her legs for the occasion.

context

Testing Story

Candidate1: Maxine doesn't want to go on the date.
Candidate2: Maxine gets laser removal next time.

Figure 1: An example of Story Cloze Test. In test period, based on the context 4 sentences we need to choose from two candidate sentences
which one can be inferred, however, during training only the positive target (underlined) is provided.

1997] to represent the sentence; an attention-based LSTM-
RNN model to represent the document; a bilinear model to
calculate the context document and target sentence similar-
ity. The objective of the discriminator is to make its estimated
score of the real target sentence high while reducing the score
of the fake sentence generated by G, and the generator tries
to ‘fool’ the discriminator to make the fake sentence it gen-
erated score high. G and D are trained in an alternating way
which results in better and better behavior.

However, traditional GANs can not be applied to text: On
the one hand, when the output of the generator is discrete, it
is impossible to pass the gradient update from the discrimina-
tor to the generator. On the other hand, the success of GANs
is dependent on the Nash equilibrium point of a non-convex
game with continuous, high dimensional parameters, but this
point is notoriously hard to find [Donahue et al., 2016;
Arjovsky and Bottou, 2017]. In this paper, to solve the first
problem, we utilize the Gumbel-softmax [Jang et al., 2016;
Kusner and Hernández-Lobato, 2016] on generator to make
the generated output continuous, however, different from the
previous method that set the temperature value in Gumbel-
softmax by rule of thumb, we take the value as a model pa-
rameter and fit it automatically. To solve the second prob-
lem, we pre-trained G with maximum likelihood estimation
(MLE), and after a few epochs we add some noise to the dis-
criminator to make the downstream generator more stable.

Our experimental results show the advantage of the
CGANs compared with other deep-learning systems and
achieves a new state-of-the-arts result in SCT. In addition, as
our CGANs is unsupervised, we conduct a preliminary exper-
iment trying to employ the external large unlabeled corpus to
enhance the behavior of our CGANs. Although it does not
perform so well but shine light for future work. We do some
ablation experiments to highlight the advantage of CGANs
and the attention mechanism. At last, we analyze the com-
monsense MC problem and show the difficulty to solve them
using off-the-shelf systems.

2 Methodology
Generative Adversarial Networks [Goodfellow et al.,
2014] are a class of methods for learning generative models
based on game theory. This type of architecture consists of
two separate models: generator network G(z;θG) and dis-
criminator network D(x;θD). The generator transforms a
vector noise z into a fake data x, the discriminator tries to
minimize the probability of x and increase the probability of
the real data x. The generator tries to increase the probability
of the fake data x. Training GANs is equal to finding a Nash
equilibrium between the two non-cooperative player which is

formulated as follows:
min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

However, in practice Equation 1 may not provide sufficient
gradient for G. So sometimes we train the generator to maxi-
mize logD(G(x)) rather than minimize log(1−D(G(z))).

2.1 Discriminator Network
The discriminator network consists of two sub-networks: a
sentence representation network to model sentence from in-
put word embedding and a document representation network
to model the document from sentence representation.

Sentence representation: In this paper we use recurrent
neural networks to model the variable-length text. Instead of
LSTMs, we adopt a LSTM variant called gated recurrent unit
(GRU) [Cho et al., 2014] as building block for RNN because
it has shown advantages in many tasks and comparative less
parameter [Jozefowicz et al., 2015]. The sentence GRU is for-
mulated as follows:

zt = σ(Wxzxt + Whzht−1)

ft = σ(Wxfxt + Whfht−1)

h̃t = tanh(Wxhxt + Whh(ft � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t

(2)

Where xt is the input word embedding and � is the element-
wise dot (i.e. gate) operation. After recurrently processing the
words sequence we use the last word hidden representation as
the sentence representation.

Document representation: we use another GRU to pro-
cess each sentence representation derived from previous step
recurrently to get the context document representation. How-
ever, as in our commonsense MC application, the context doc-
ument should be represented based on the target sentence. For
instance, in the left example of Figure 1, the last sentence
(underlined) has a noun phrase ‘functioning engine’, so when
building the context document representation we should fo-
cus on the 4th sentence that contains ‘fixed the starter’. In this
paper we add the recently well-developed attention mecha-
nism [Bahdanau et al., 2014; Wang et al., 2016b] into the doc-
ument representation process. Concretely, when adding the
sentence representation to the document-GRU hidden unit,
we gate each sentence representation w.r.t. the attention from
the target sentence as:

αt = σ(rT4 Wart)
r̃t = αt � rt

(3)

where Wa is the bilinear attention matrix and t ∈ [0, 1, 2, 3],
rt is the target sentence representation. We omit the super-
script s (denote ‘sentence’) for simplicity. After the attention



process, we take the gated sentence representation (i.e. r̃t) as
input to another GRU which we call document GRU. We use
the last document GRU hidden state rd3 as document repre-
sentation rd. Finally, we use a matrix M to transform the doc-
ument representation into the sentence representation space
and the document-entail-target probability can be denoted as
their dot sigmoid value:

SCORE = σ[(rd)TMrs4] (4)

The discriminator architecture is illustrated in Figure 2.
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Figure 2: Discriminator Network. Yellow blocks denote word em-
bedding, green and purple blocks stand for sentence and document
GRU hidden states respectively.

2.2 Generator Network
The goal of our generator network is to generate a fake sen-
tence and deceive the discriminator to take it as real target.
In original GANs the input to the generator is only a ran-
dom noise z, but in our application the generated fake sen-
tence must in accordance with the context, so we fed context
representation rd as an additional input to G. Intuitively, the
generator could be a standard decoder as follows:

z ∼ N (0, 1)

hdi = GRU(yi−1, hi−1; z, rd)

yi = argmax
j∈1,...,|V |

softmax(DTj Wphdi )
(5)

Where the D is word embedding lookup matrix with |V |
words, Wp is projection matrix that transform the genera-
tor hidden space to word embedding space. However, the
argmax operation in Equation 5 makes the output discrete
that the gradient of the discriminator could not be applied
to the generator. Thus we use the Gumbel-softmax [Jang et
al., 2016] to replace the softmax+argmax operation to get the
output word embedding. Concretely, we calculate the output
word embedding y as follows:

πj = Relu(DTj Wphdi )
gj = − log(− log(u)), u ∼ Uniform(0, 1)

pj = softmax(
log(πj)

τ
)

y =

|V |∑
j=1

pjDj

(6)

gj is a sample from Gumbel(0, 1) distribution. τ is the
temperature of the softmax that when it is set to zero, the out-
put of Gumbel-Softmax is one-hot which is identical to the
categorical distribution p(πi). And when τ → ∞, the distri-
bution is just uniform and the output word embedding is the
mean of all word embedding in the vocabulary. In this paper,
we calculate τ as follow:

τ = Relu(wTτ hdi ) + ε (7)

Where wTτ is a vector to calculate τ and ε is a small value
to keep τ positive. In this way, the temperature of the model
could be determined by itself.

Traditional GANs are suffer from the notorious problem
that the training process is hard to control [Arjovsky and Bot-
tou, 2017], in this paper, to make the training process more
stable, we make four improvements:

• Instead of training the generator from random initia-
tion, we pre-trained it by maximum the sentence like-
lihood which corresponds to neural machine translation-
the ground truth sentence is fed to the generator at each
time step as a supervision. The context information is ig-
nored during pre-training process and only the random
vector is input to the generator.

• Adding small noise to the inputs of the discriminator to
smooth the distribution of the generator output probabil-
ity mass. As has been proposed in [Arjovsky and Bottou,
2017], the support of the data distribution and generator
distribution are disjoint or lie on low dimensional mani-
folds, thus the gradient of the discriminator to the gener-
ator will be zero almost everywhere. Thus adding some
noise makes their support intersecting1.

• During training process, unlike MLE where the supervi-
sion is imposed on every step of the decoder, in CGANs
only the score of the discriminator are provided. In or-
der to train the generator more quickly, we add more su-
pervision to the generator: we force the generated sen-
tence to have more semantic similarity with the real
target sentence. We do it by adding another objective
to the generator in Equation 1: similarity(s4, s) =
1− cosine(rss, rs4) where s is the generated sentence.

• Sometimes training GANs is unstable which may cause
the loss of G and D departure a lot, to monitor the train-
ing process of each part we calculate their loss and de-
termine the number to update them: If the loss of G is
much larger than D then we update G more often and
vise versa.

The training process of CGANs is detailed in Algorithm 1.

3 Experiment
We use the off-the-shelf 100-dimensional word embeddings
from word2vec website2 and fix it during training. All weight

1We do this optimization only after few epochs when the dis-
criminator is somewhat ‘perfect’.

2https://code.google.com/archive/p/word2vec/



Random
Frequency

N-gram-overlap

Gensim
Sentiment-Full

Sentiment-Last

Skip-thoughts

Narrative-Chains-A
P

Narrative-Chains-Stories

DSSM
GRU w/o CGAN&Attention

w/o Attention

w/o CGAN

CGAN

Validation Set 0.514 0.506 0.477 0.545 0.489 0.514 0.536 0.472 0.510 0.604 0.573 0.589 0.603 0.593 0.625
Test Set 0.513 0.520 0.494 0.539 0.492 0.522 0.552 0.478 0.494 0.585 0.561 0.580 0.595 0.578 0.609

Table 1: Accuracy of different methods in SCT.

Algorithm 1 Conditional Generative Adversarial Networks
Require:Threashold: # of iteration to add noise. kd=kg=1 .

1: Pre-training G by maximizing target sentence likelihood.
2: for number of training iterations do
3: for number steps kd do
4: sample a context document {s0, ..., s3} and the

real target s4, then use G to generate fake sentence s
5: if iteration > Threashold then sample zd from
N (0, 1), add zd to the embedding of s4 or s.

6: Calculate SCORE from Equation 4.
7: LD = − logSCORE(s4)− log(1− SCORE(s))
8: B Update the discriminator:

9: ∇θD =
dLD
dθD

θD = θD + λ∇θD

10: for number steps kg do
11: sample a context document {s0, ..., s3} and get

the generated sentence s from generator G
12: LG = − logSCORE(s)+similarity(s4, s)
13: B Update the generator:

14: ∇θG =
dLG
dθG

θG = θG + λ∇θG

15: B Update kg and kd based on LG and LD

and attention matrices are initiated by fixing their largest sin-
gular values to 1.0. We use Adadelta with ρ = 0.999 to update
parameter. We use L1 criteria with weight 1e-5 to regulate
the parameter. All training process is implemented with batch
size equals to 32. For the discriminator: we set the vocabulary
size to 25000 after pre-processing. The sentence GRU hidden
state size is set to 128 and the document hidden state size is
set to 150. For the generator: the decoder size is set to 256,
and we use a transfer matrix to project the document repre-
sentation (150d) into the decoder space. ε is set to 1.0E-20. If
G has not yet generate word ‘STOP’ after 50 steps, then we
stop it. The THRESHOLD was set to 0.2. For kd and kg , we
truncate their max value to 20 (i.e. at most 20 samples are fed
to G or D every training step).

3.1 Baselines
There are 10 baseline methods proposed in [Mostafazadeh et
al., 2016] (a) Random: random select a sentence from the
two candidates. (b) Frequency: using TRIPS semantic parser
to extract the target sentence main verb, and then select the
one whose main verb that get more hits from search engine.
(c) N-gram Overlap: choose the alternative which shares
more n-grams with the context, the n-grams were calculated
using Smoothed-BLEU [Lin and Och, 2004] and n is set to
4. (d) GenSim: Average Word2Vec: choose the candidate

with its average word embedding closer to the context. (e)
Sentiment-Full: Choose the hypothesis that matches the av-
erage sentiment of the context using the state-of-the-art sen-
timent analysis model [Manning et al., 2014] which assigns
a numerical value from 1 to 5 to a sentence. (f) Sentiment-
Last: Choose the hypothesis that matches the sentiment of
the last context sentence. (g) Skip-thoughts Model: This
model uses Skip-thoughts Sentence2Vec embedding [Kiros
et al., 2015] which use a RNN encoder to encode the source
sentence and two decoders to predict the previous and fol-
lowing sentence. (h) Narrative Chains-AP: Implements the
standard approach to learning chains of narrative events based
on Chambers and Jurafsky [2008] and choose the hypothesis
whose co-referring entity has the highest average PMI score
with the entitys chain in the context. (i) Narrative Chains-
Stories: The same model as above but trained on Story Cloze
Test. (j) Deep Structured Semantic Model (DSSM): This
model is trained to project the context and the fifth sentence
into the same vector space [Huang et al., 2013].

In addition to the above baselines, we also conduct some
ablation experiments to evaluate the importance of the ad-
versarial training and the improvement by applying attention
mechanism. The model without CGANs is reduced to a sin-
gle discriminator that no negative sentence is provided by the
generator, so we randomly sample a sentence from the train-
ing dataset as the negative target and train the discriminator
thereof. For the model without attention mechanism, the input
to the document GRU is the original sentence representation
rt without the attention gate operation in Equation 3. The re-
sult is shown in Table 1.

4 Analysis
CGANs: As shown in Table 1, our proposed sentence-
document GRU model is competitive compared with previ-
ous methods. However, when equipped with CGAN, the per-
formance increases a lot and achieves a new state-of-the-arts
result. When the discriminator is trained based on random
negative samples (GRU, w/o CGANs) the performance drops
a lot, we conjecture that the sampled negative target sentences
have huge semantic distance with the real target so the bound-
ary of the discriminator to discriminate the positive from neg-
ative is weak. However, the negative sentence in test set has
a relatively close distance to the real one in the semantical
space thus the blurred discriminator fails to make discrimina-
tion. The improvement of CGANs may attribute to the advan-
tages of the generative network and the adversarial training
process where we get more challenging negative sentences
that make the discriminator more discriminative. In order to
analysis the improvement of CGANs quantitatively, we start



with a pre-trained sentence-document GRU model and eval-
uate the CGANs every 10000 samples, then we average the
normalized Euclidean distance between the true and gener-
ated target sentence, the result is shown in Figure 3.
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Figure 3: Performance with respect to the training process. X-axis is
the training examples that had been fed to the discriminator. The red
line is the normalized Euclidian distance between true target sen-
tence and generated fake sentence.

At the beginning of CGANs training process, our model
does not improve significantly because the generator does
not learn very well to generate the competitive negative ex-
amples. With the training proceeds and the generator pro-
duces negative sentences with higher quality (i.e. Euclidean
distance with the real target became smaller), the behavior
of the discriminator improves accordingly. In addition, after
few epochs, we add some noise to the discriminator to make
the generated sentence and the real sentence have intersecting
support and therefore benefit the performance.

In order to measure the improvement by introducing noise
to the discriminator, we conduct further experiment: we train
two separate CGANs on SCT, however, the second model is
trained without any noise. We report the loss for both discrim-
inator and generator, the result is shown in Figure 4.
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Figure 4: The training loss w.r.t. discriminator and generator. The
right model is not fed with noise. We add noise to the from step
1000 to the end, one step equals to 8 batches.

We can see that after adding some noise to the discrimina-
tor, although it is impacted but the generator becomes more
and more stable and optimal, thus it could generate more
competitive sentences to make the discriminator more dis-

On Christmas morning, I woke up at 5 AM like when I was a child.

I sat in front of the tree in the dark and admired the lights.

The presents looked beautiful, all wrapped up, underneath the tree.

I made two mugs of hot chocolate and woke up my husband.

I hated Christmas. It was a great morning.

Figure 5: An example drawn from the validation set. The red rectan-
gle denotes the attention weight. Deeper color means more attention.

criminative. If we do not add noise during training, after a
few steps the discriminator is optimal and the generator is di-
vergent. We suppose that the random noise could ’push’ the
discriminator from one point where it may have stuck in, and
thus its gradient could be properly transmitted to generator.

Attention Based Sentence-Document GRU: In this work
we build a document embedding model in a hierarchical man-
ner in which the sentence and the document are represented
separately. However, previous works usually employ a single
RNN to model the whole document [Hermann et al., 2015].
In order to evaluate the improvement by introducing the hi-
erarchical structure, we build a single GRU network similar
to the one proposed in Hermann et al. [2015] and show the
result in Table 1 (GRU). The poor performance of a single
GRU may attribute to the fact that sentences in SCT are not
semantically continuous and sometimes there exists transi-
tion between consecutive sentences. Take the right example
in Figure 1 for instance, the second sentence ‘She doesnt like
the feeling of using a razor’ and the third sentence ‘One night
Maxine has a big date and decides to wear a dress’ are not se-
mantically continuous and there is no discourse relationship
between them, a single GRU network is not good at modeling
this linguistic phenomenon.

In addition, it can be shown in the Table 1 that the attention
mechanism could benefit our model a lot, it has been proved
in many previous works that the attention mechanism could
enhance the semantic-inference ability of a neural model [Lu-
ong et al., 2015]. We illustrate an example in Figure 5.

It can be seen from the figure that when context document
sentence is related to the candidate target sentence, this sen-
tence will get more attention and weight more in the final doc-
ument representation, and in SCT not all context information
should be taken into account for inference, thus the sentence
distillation process makes the subsequent inference easier.

Unsupervised pre-training is a promising ameliorates to
our model. As our model is nearly unsupervised which only
requires<context,target> pairs, so it is extensible to the large
unsupervised data such as newspaper or wiki article where
several coherent events are connected in the same document.
In this work, we pre-train our CGANs in the New York Times
(NYT) news article corpus3. We filter out some documents
that are too short to process and get nearly 220,000 docu-
ments which contain about 8,000,000 sentences. Without loss
of generality, we select four consecutive sentences in a docu-
ment as context and the next sentence as the target. The exper-
iment detail is same with SCT. In this paper, we design several
setups on the external unlabeled data: I: training the CGANs
on NYT and test it on SCT. II: pre-training the CGANs on
small portion of NYT (nearly 20000 examples) then fine-tune
it on SCT. III: pre-training the CGANs on entire NYT set and

3https://catalog.ldc.upenn.edu/LDC2008T19



then fine-tuned it on SCT. The result is shown in Table 2.

I II III
Dev 0.549 0.594 0.558
Test 0.538 0.588 0.574

Table 2: The result of CGANs with external unlabeled data.

We can find that the performance drops a lot when em-
ploying the external data, this is inconsistent with our ex-
pectations. We find that the average sentence length of NYT
is 21.8 while the average sentence length of SCT is 7.5 and
the pre-trained generator of CGAN is prone to generate long
sentence. And the sentences in SCT are highly summary and
abstractive, but in NYT the sentences are narrative and each
sentence contains a lot of information that may be redundant
to the topic or sub-sequent sentence. In addition, the events in
NYT are limited to few topics such as ‘kill, dead, explode’
etc., however the causal and temporal events in SCT span
larger domain. This inherent divergence may cause the poor
performance in our task.

The difficulty of commonsense MC: Commonsense
is the basic ability to perceive, understand, and judge
things. It is formed and developed during our daily ex-
perience and finally be expected by all people without
the need for debate. Humans could achieve 100% accu-
racy in the SCT while state-of-the-arts models struggle to
outperform 60%. Deep analyze the SCT data we found
that many stories in commonsense MC are beyond lex-
ical matching or even semantic inference. For example:

1) Morgan enjoyed long walks on the beach.
2) She and her boyfriend decided to go for a long walk.
3) After walking for over a mile, something happened.
4) Morgan decided to propose to her boyfriend.
⇒ Her boyfriend was upset he didn’t propose first.

Inference like this is easy for our adults but really hard for
a machine. The commonsense is innumerable and can not
be covered by limited textual evidence, and other forms of
knowledge such as ethical or scientific evidence is required
to strengthen the commonsense inference ability of a system.

5 Related Work
Generated adversarial networks were proposed by Good-
fellow [2014] as a generative model. Compared with other
generative models such as variational auto-encoder [Kingma
and Welling, 2013], GANs could generate higher quality im-
ages. Since then, many applications or improvement have
been applied to GANs such as LAPGAN [Denton et al.,
2015] which generate images in a coarse-to-fine fashion by
generating and upsampling in multiple steps; InfoGAN [Chen
et al., 2016], an information-theoretic extension to the GANs
that is able to learn disentangled representations. [Yu et al.,
2017] is the first work as far as we know to apply GANs on
text, however, they train it by policy gradient which may take
a long time to fit the model.

Gumbel-softmax is could make our gradient descent
method applicable. it is actually a re-parameterization trick
for a distribution that we can smoothly deform into the cate-
gorical distribution. Using the Gumbel-Max trick could pro-

vide an efficient way to draw samples from the categorical
distribution [Jang et al., 2016]. Traditional methods to deal
with the discrete prediction are sometimes depend on REIN-
FORCE algorithm [Williams, 1992; Yu et al., 2017], how-
ever, as this algorithm relies on sampling and Monte Carlo
search which decrease the training speed drastically. In addi-
tion, this algorithm sometimes requires a strong baseline to
reduce the variance of the gradient but this baseline is hard to
derive and sometimes have a negative impact on the training
process.

Machine comprehension is a recently proposed natural
language understanding task which follows the traditional
QA. Traditional method mainly focuses on employing off-
the-shelf NLP tools to extract features such as POS tags and
then build a feature engineering system [Wang et al., 2016a].
Herman et al. [2015] proposed a large cloze style dataset
CNN/Daily Mail dataset in which the target is to generate
word in a statement slots given the context. Memory networks
based models have been proposed to solve question answer-
ing problem [Weston et al., ] on bAbi [Weston et al., 2015].
However, this dataset is synthesized and only contains a small
vocabulary, so a rule-based system solves them nearly totally
correct [Lee et al., 2015]. SQuad [Rajpurkar et al., 2016] is a
recently released MC dataset in which only the question and
document are given so we must predict the answer from the
document. This type of dataset is sometimes based on formal
text such as wiki or news articles and most of the questions
are limited to syntactic variation or lexical variation. In this
work we are focused on commonsense MC which evaluates
systems deep semantic inference ability. The baseline models
proposed in [Mostafazadeh et al., 2016] containing not only
feature engineering systems but also deep learning models,
but the performance is still poor compared with human.

6 Conclusion

In this work, we propose a sentence-document GRU mod-
els with discriminative adversarial training. Our experimen-
tal result demonstrates the advantage of adversarial training
and achieves a new state-of-the-art result in commonsense
machine comprehension task. We also introduce the atten-
tion mechanism that could benefit our document represen-
tation. However, our model is still poor compared with hu-
man beings, we found that much inference in commonsense
MC is too hard for a machine system to induce and deduce.
Although in this work we fail to benefit from the external
large unsupervised data, in the future we plan to introduce
more consistent unlabeled texts such as novel or design a bet-
ter mechanism that could employ the external knowledge and
abstract commonsense from the unlabeled data.
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