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Background

Recently proposed Story Cloze Test iIs a commonsense machine comprehension

application to deal with natural language understanding problem. This dataset
contains a lot of story tests which require commonsense inference ability.
Unfortunately, the training data is almost unsupervised where each context
document followed with only one positive sentence that can be inferred from
the context. However, in the testing period, we must make inference from two
candidate sentences. To tackle this problem, we employ the generative
adversarial networks (GANs) to generate fake sentence. We proposed a
Conditional GANs (CGANSs) in which the generator is conditioned by the
context. Our experiments show the advantage of the CGANSs in discriminating
sentence and achieve state-of-the-art results in commonsense story reading
comprehension task compared with previous feature engineering and deep
learning methods.

- more sharp distributionp
- Temperature . )
m; = softmax(D; Wph;)
_________________________________________________________ | p; = softmam(%)
Wy T[ ___________________________ 4
Pt o y=) D
> =1

Maxine usually hates to shave her legs.

Billy's car broke down on the highway. She doesn't like the feeling of using a razor.

He looked under the hood and realized his starter was broken. context -
The nearest mechanic quoted Billy 300 dollars, which was far too much.

He instead called a friend who came and fixed the starter for $100. She shaves her legs for the occasion,

Billy drove away happily with a functioning engine. Candidatel: ~ Maxine doesn't want to go on the date.
CandidateZ: Maxine gets laser removal next time. &'

One night Maxine has a big date and decides to wear a dress.
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Generate the negative
sentence(i.e. the wrong candidate)

Methods

Use Generative adversarial networks(GANS) to

generate the fake sentence
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A Hierarchical context-target GRU network to give the score of a
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ePre-training the generator
with MLE

e Adding small noise to the
inputs of the discriminator
in each step

e|nstead of training the
generator and discriminator
with fixed ratio, we monitor
the score of the real and
fake example and tuning the
training step for D and G
thereof.
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Algorithm 1 Conditional Generative Adversarial Networks

Require:T'hreashold: # of iteration to add noise. kg=k,=1 .
|: Pre-training G by maximizing target sentence likelihood.
2: for number of training iterations do
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for number steps k4 do

sample a context document {sy, ..., s3} and the
real target s4, then use G to generate fake sentence s
if iteration > T'hreashold then sample z; from

N(0,1), add z, to the embedding of s, or 5.

Calculate SCORE from Equation 4.
Lp =—logSCORE(s4) — log(1 — SCORE(3))
> Update the discriminator:

Vo, =

dLp
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for number steps k, do

sample a context document {sy,..., s3} and get
the generated sentence s from generator G

La=

—log SCORE(3)+similarity(ss, s)

> Update the generator:

Vo =

dL¢

E HG — HG‘ + A?{}U

> Update k, and k4 based on L and Lp

Experiments
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Performance with respect to the training process. X-axis is the
training examples that had been fed to the discriminator. The

red line is the normalized Euclidian distance between true
target sentence and generated fake sentence.

| hated Christmas.
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The training loss w.r.t. discriminator and generator. The right
model is not fed with noise. We add noise to the from step
1000 to the end, one step equals to 8 batches.

It was a great morning.

On Christmas morning, | woke up at 5 AM like when | was a child.
| sat in front of the tree in the dark and admired the lights.
The presents looked beautiful, all wrapped up, underneath the tree.

| made two mugs of hot chocolate and woke up my husband.

An example drawn from the validation set. The red rectangle denotes the attention weight. Deeper color means more attention.
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