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The purpose of this note is to supplement the slides that describe the Karush-Kuhn-Tucker 
conditions. Neither these notes nor the slides are a complete description of these conditions; they 
are only intended to provide some intuition about how the conditions are sometimes used and what 
they mean. 

The KKT conditions are usually not solved directly in the analysis of practical large nonlinear 
programming problems by software packages. Iterative successive approximation methods are most 
often used. The results, however they are obtained, must satisfy these conditions. 
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The solution is x1 = x2 = x3 = x4 = 0 and J = 0. 

Example 1 

One equality constraint: 
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subject to 

x1 + x2 + x3 + x4 = 1 (1) 
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Solution: Adjoin the constraint 

2 2 2 2min J̄ = x
1 + x

2 + x
3 + x

4 + �(1 − x1 − x2 − x3 − x4) 

subject to 

x1 + x2 + x3 + x4 = 1 

In this context, � is called a Lagrange multiplier. The KKT conditions reduce, in this case, to 
setting � J̄/�x to zero: 

⎨ � ⎨ � 
2x1 − � 0 

⎩ � ⎩ ��J̄
⎩ 2x2 − � 

� ⎩ 0 
� 

= ⎩ � = ⎩ �	 (2)
�x ⎪	 2x3 − � � ⎪ 0 � 

2x4 − � 0 

Therefore 

x1 = x2 = x3 = x4 = 
2 

so 
�	 1 

x1 + x2 + x3 + x4 = 4 = 1 or � = 
2 2 

so 
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Figure 1: Example 1, represented in two dimensions 

Comments 

•	 Why should we adjoin the constraints? The answer to this question has two parts: 
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¯λ	 First, it does no harm. There is no difference between J and J for any set of xi that 
satisfies the problem since the set of xi that satisfies the problem must satisfy (1). 

Furthermore, it works. This may not feel like a very satisfying answer, but this is also 
why we plug x = Ce�t into a linear differential equation with constant coefficients. We 
could have done a zillion other things that would have done no harm, but they would 
not have done any good either. There is not much point in studying them; we only study 
what works. 

λ	 In this case, it provides a relationship that we can use among the components of x (equa­
tion (2)). In general, it replaces the minimization requirement with a set of equations 
and inequalities, and there are just enough of them to determine a unique solution (when 
the problem has a unique solution). 

•	 The solution is illustrated in Figure 1. We are seeking the smallest 4-dimensional sphere 
that intersects with the equality constraint (a 3-dimensional plane in 4-dimensional space). 
Equation (2) essentially tells us that the solution point is on a line that intersects with that 
plane. 

•	 If we asked for the maximum rather than the minimum of J , the same necessary conditions 
would have applied, and we would have gotten the same answer following the steps shown 
here. However, that answer would be wrong . After all, if it is a minimum, it cannot also be 
a maximum unless the function is a constant, which it certainly is not. 

We know that we have found a minimum because of the second order conditions: the second 
derivative matrix �2J/�x2 is positive definite. 

•	 It is a coincidence that for both Example 0 and Example 1 J = xi, i = 1, ..., 4 at the optimum. 
What is not a coincidence is that J for Example 1 is greater than J for Example 0. If you 
change an optimization problem by adding a constraint, you make the optimum worse; or, at 
best, you leave it unchanged. 

Example 2 

One equality constraint and one inequality constraint: 

min J = x2

1 + x2

2 + x2

3 + x2

4 

subject to 

x1 + x2 + x3 + x4 = 1 (3) 

x4 � A (4) 

in which A is a parameter that we will play with. 
Figures 2 and 3 illustrate two possible versions of this problem, depending on the value of A. 

(The shaded regions are the forbidden values of x, the places where x4 > A.) 

3 



KKT Examples


x1 
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equality constraint equality constraint 

Figure 2: Example 2, A large Figure 3: Example 2, A small 

Digression: The inequality constraint requires a new Lagrange multiplier. To understand it, let 
us temporarily ignore the equality constraint and consider the following scalar problem, in which J 
and g are arbitrary functions that are differentiable, whose derivatives are continuous, and where 
J has a minimum: 

min J(x) (5) 
x 

subject to 

g(x) � 0 

There are two possibilities: the solution x� satisfies g(x�) < 0 (ie, where the solution is strictly in the 
interior of the inequality condition) or it satisfies g(x�) = 0 (where the solution is on the boundary 
of the interior of the inequality condition). Figures 4 and 5 illustrate these two possibilities. 

Possibility 1, the interior solution: The necessary condition is that x� satisfies 

dJ 
(x �) = 0 (6)

dx 

That is, the solution is the same as that of the problem without the inequality constraint. 
Possibility 2, the boundary solution: Let x = x� + �x. For x� to be the optimal solution to (5), 

�x = 0 must be the solution to 

min J(x � + �x) (7)
�x 

subject to 

g(x� + �x) � 0 

This is certainly true if we restrict our attention to small �x. In that case, we can expand J and 
g as first order Taylor approximations and (7) becomes, approximately 
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g(x) < 0 g(x) < 0 

Figure 4: Case 1, Interior solution Figure 5: Case 2, Boundary solution 

dJ 
min J(x �) + (x �)�x 

�x dx 
subject to 

g(x �) + 
dg 

(x �)�x � 0 
dx


Since J(x�) is independent of �x and g(x�) = 0, this can be written


dJ 
min (x �)�x (8)

�x dx 
subject to 

dg 
(x �)�x � 0 

dx

We now seek conditions on 
dJ 

(x �) and 
dg 

(x �) such that the solution to (8) is �x = 0. Note 
dx dx

that (8) is a linear programming problem. 
To be really exhaustive about it, we must now consider the four cases in the table below1 . Case 

1, for example, reduces to 

min �x 
�x 

subject to 

�x � 0 
1Actually, there are nine cases, since we could also have dJ/dx = 0 or dg/dx = 0. However, if dJ/dx = 0 at 

x = x�, then we really have a situation like the interior solution. That is, the constraint is still ineffective since we 
would have the same x� even if we ignored the g(x) � 0 condition. If dg/dx = 0 at x = x�, then the constraint 
qualification is violated. This is discussed below. 
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since the magnitudes do not matter — only the signs matter. The solution is clearly �x = −�. 
Similarly, Case 2 becomes 

min �x 
�x 

subject to 

�x � 0 

and it is clear that the solution is �x = 0. The other cases are similar. 

Case 

1 
2 
3 
4 

dJ 
(x �)

dx 
> 0 
> 0 
< 0 
< 0 

dg 
(x �)

dx
> 0 
< 0 
> 0 
< 0 

Solution 

�x = −� 
�x = 0 
�x = 0 
�x = � 

Therefore, the only cases in which the solution is �x = 0 are Cases 2 and 3, the cases in which 

the signs of 
dJ 

(x �) and 
dg 

(x �) are opposite. Therefore, there is some positive number µ such 
dx dx

that 

dJ 
(x �) = −µ

dg 
(x �)

dx dx
or 

dJ dg
(x �) + µ (x �) = 0 

dx dx

Equation (6) is implied by this if we require µ = 0 when g(x�) < 0.


Solution: For the problem of Example 2, define 

J̄ = x 2
1 + x 2

2 + x 2
3 + x 2

4 + �(1 − x1 − x2 − x3 − x4) + µ(x4 − A)


Then, the KKT conditions are
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�J̄
= 0 (9)

�x 
x1 + x2 + x3 + x4 = 1 (10) 

x4 � A (11) 

µ � 0 (12) 

µ(x4 − A) = 0 (13) 

From (9): 
⎨ � ⎨ � 

2x1 − � 0 
⎩ � ⎩ ��J̄
⎩ 2x2 − � 

� ⎩ 0 
� 

= ⎩ � = ⎩ � 
�x ⎪ 2x3 − � � ⎪ 0 � 

2x4 − � + µ 0 

Therefore 
� � − µ 

x1 = x2 = x3 = , x4 = 
2 2 

so, from (10), 

x1 + x2 + x3 + x4 = 4 − = 1 
2 2 

or 
2 + µ

4� − µ = 2 or � = 
4 

Therefore 
2 + µ 1 µ 2 + µ µ 1 3µ 

x1 = x2 = x3 = = + , x4 = − = − (14)
8 4 8 8 2 4 8


From (11),


1 3µ

− � A 

4 8 
or 

3µ 1 
� − A (15)

8 4 

Case 1: A > 1/4 This is the interior case illustrated in Figures 2 and 4. Since 1/4 − A � 0, (15) 
implies that (12) is automatically satisfied. From (14) 

1 1 
x1 = x2 = x3 � ; x4 = 1 − (x1 + x2 + x3) � 

4 4

But we have more from (14): (13) implies that µ = 0. Therefore


1

x1 = x2 = x3 = x4 = 

4 
which is consistent with the answer to Example 1 and common sense. Example 1 says that this is 
optimal; if we also require that x4 is less than A and A is greater than 1/4, we haven’t changed 
anything. Note that the optimal J is again 1/4. 
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Case 2: A = 1/4 This behaves like Case 1. The unconstrained optimum lies on the boundary. 
Therefore, if we ignored the inequality constraint, we would get the same x� . 

Case 3: A < 1/4 If x4 were strictly less than A, then (13) would require that µ = 0. But then 
(14) would imply x = 1/4, which violates (11). 

Therefore x4 = A and 

1 
x1 = x2 = x3 = (1 − A)

3


Also

⎝ �

1 1 
J = 3 (1 − A)2 + A2 = (1 − A)2 + A2 

9 3
⎛ ⎜1 

= 1 − 2A + 4A2 

3 
and that J � 1/4 and that J = 1/4 when A = 1/4. 

Comments 

• The comments after Example 1 hold here.


•

⎞ 

1 1 
⎧ 
⎧ 
⎧ if A � 
⎧ 
⎟ 4 4 

J = 
⎧ 

⎛ ⎜⎧ 
⎧ 1 
⎧ 
⎠ 1 − 2A + 4A2 otherwise 

3 
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The graph of J as a function of A is:
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•	 The extension of the KKTs to more than one equation and/or more than one inequality 
constraint is straightforward, but there is one more condition to be applied in general, the 
so-called constraint qualification. This says that the gradients of the equations and of the 
effective inequality constraints must be linearly independent at the solution x� . 

•	 The informal discussion of the KKT conditions was modeled on that of Bryson and Ho (1975). 
There are plenty of other references, but this discussion is especially intuitive. 
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