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Problem Description

o,

» Given X(observations), find Y (predictions)

Might depend on

* For example, PP previous days and
_ e each other

X ={temperature, moisture, pressure,...} Might depend on

each other
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Problem Description

» The relational connection occurs in many applications, NLP,
Computer Vision, Signal Processing, ....

Traditionally in graphical models, ==) P(X,y) = p(y|Xx)p(
» Modeling the joint distribution can lead to difficulties
» rich local features occur in relational data, g==) p(X)
» features may have complex dependencies,
» constructing probability distribution over them is difficul
Solution: directly model the conditional, p(y |X)
» is sufficient for classification!

» CRF is simply a conditional distribution p(y|x) with an
associated graphical structure
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Discriminative Vs. Generative

* Generative Model: A model that generate
observed data randomly

» Naive Bayes: once the class label is known, all
the features are independent K Naive Bayes

p(y Hp (xx]y)

» Discriminative: Directly estlmate the posterior GU@ML
probability; Aim at modeling the

“discrimination” between different outputs

» MaxEnt classifier: linear combination of feature
function in the exponent,

1
p(ylx) = Z(x) eXp {Zekﬁ“ (y,x } Logistic Regression

Both generative models and discriminative models describe distributions over (y, x), but
they work in different directions.
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Discriminative Vs. Generative
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SEQUENGE GENERAL

Naive Bayes HMMs GRAPHS Generative directed model
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ogistic Regression Linear-chain CRFs GRAPHS General CRFs

O=observable O=unobservable
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Markov Random Field(MRF) and Factor Graphs

* On an undirected graph, the joint distribution of
variables Y 1

p(y) = EHWC Vo) Z=D 11w (ye)
C : y ¢
* . (Y.)=0:Potential function i

* Typically : yc(yc)=exp{-E(yc)} 5 'Lt

» Z :Partition function N4

p(y1,y2,93) o V1 (y1,¥2)Pa(y2,y3)¥Y3(y1,y3)

» Not all distributions satisfy Markovian properties
» Hammersley-Clifford Theorem
» The ones which do can be factorized
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Directed Graphical Models(Bayesian Network)

» Local conditional distributions
o If z(s) indices of the parents of Y.

S
p(y) = | [ p(wslyn(s)

» Generally used as generative models

O—0O

» E.g. Naive Bayes: once the class label is known, all the
features are independent

K
p(y,x) =p(v) | | p(zly)
k=1

y
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Sequence prediction

® Like NER: identifying and classifying proper names in text, e.g. China as
location; George Bush as people; United Nations as organizations

“ Set of observation, : DX = {CUt}f :

HMM is generative:

p(y,x) = H -------------- ,

t=1

® Doesn’t model long-range dependencies
® Not practical to represent multiple interacting features (hard to model p(x))

® The primary advantage of CRFs over hidden Markov models is their
conditional nature, resulting in the relaxation of the independence assumptia

® And it can handle overlapping features
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Chain CRFs

» Each potential function will operate on pairs of adjacent label variables

p(y|sc,)\) — Z(l.’,v) eXp (Z /\JFJ(yaw))

j
Fi(y,x) = Z fi(Yi-1,9i, @, 9), Feature functions
=1

» Parameters to be estimated, )

O=unobservable
O=observable
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Chain CRF

» We can change it so that each state depends on more observations

O=unobservable
O=observable

» Or inputs at previous steps

y

X

* Orallinputs y = ? =
X
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General CRF: visualization

O

o If G = (V,E) ,and Y = (Yy)vev ;
W~V < W and v are neighbors
(X,Y) isa CRF,if p(Y,|X, Yy, w #v) = p(Y, | X, Yy, w ~ v)

( Y N

>the MRF

the CRF<

J .

fixed,
~observable,
variables X (not
in the MRF)

N

we do not explicitly model any direct relationships
between the observables (i.e., among the X

. Hammersley-Clifford does not apply to X! |

[ e
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> cliques (include only
the unobservables, Y)

CRF <

observables, X (not
- included in the
cligues)

J

- Divide y MRF into cliques. The parameters inside each template are
tied @_(y_, x)--potential functions; functions for the template

p(ylx)=i R = e Oy, x)= D @, (y,,X)

Q(y X)
Z (X) Z € Note that we are not summing
over X in the denominator

» The cliques contain only unobservables (y); though, x is an argument to ®,

» The probability P,,(y|x) is a joint distribution over the unobservables Y
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General CRF: visualization

- A number of ad hoc modeling decisions are typically made with regard to the
form of the potential functions.

- . Is typically decomposed into a weighted sum of feature sensors f;, producing:
\

1 Q(y.x)
X) = — e
PY0=7 I

Ay,x) = ZCDC(yC,x) > P(y ‘ X) — z @o<C icF

D (Yo, X) =D A f (Y., %)

icF y

e Back to the chain-CRF!
Cliques can be identified as pairs of adjacent Ys:

Z(laz) exp(; N Fi(y,x)) Fi(y,z) = . fi(Yio1,yi, @, 1),

p(ylz, A) =




Chain CRFs vs. MEMM

» Linear-chain CRFs were originally@nduced as an improvement to MEMM
* Maximum Entropy Markov Models (MEMM)
o Transition probabilities are given by logistic regression

* O—=O—0O—0)

PrevwM Y|X Hp ytiyt 1, X CB (5 é CID
K X

1
p(Yt|yt—1,%) = i) P {ngfk(ytayt—laxt)}

k=1

K
Zt(yt—lax) — Zexp {ngfk(ylayt—laxt)}

y’ k=1

» Notice the per-state normalization
* Only dependent on the previous inputs; no dependence on the future states.
» Label-bias problem
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CRFs vs. MEMM vs. HMM

« HMM @

YI_ 1 Yi. Yz’—l—l
Yz'—l Yt’ Yz’—|—1 ° o °
L -0 - 8
Xio1 X, Xit1
¢« MEMM [ } {
O O O
Xz’—l X;‘ XH—l

 CRF




CRFsvs. MEMM vs. HMM
« HMM @
Ya—l Yi. Yz’—l—l
Y 1 Y; Yiq I I I
[ ] -9 - @
Xio1 X, Xit1
« MEMM [ l {
o 0 0
Xi-1 X Xi+1 Y1 Y Y1
» CRF I { [
0 o o
Xi 1 X Xit1
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Inference

» Given the observations,{xi})and parameters, we target to find the

best state sequence
y* = argmaxy p(y|x)

» For the general CRF:
i 1 2P¥eX)
y =argmax P(y | X) =arg max —ec =argmax Y ®_(y,,X)
y y Z y ceC
» For general graphs, the problem of exact inference in CRFs is

intractable

» Approximate methods ! A large literature ...
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Inference in HMM

O

¢ Dynamic Programming:
» Forward
» Backward
* Viterbi <€
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» Chain CRF could be done using dynamic programming
1

p(ylz, A) = 7 (@) eXp (Z ANiFi(y,x)) Fi(y,x) = ifj(yz’—layi;w:i)a
j i=1
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Parameter Learning: Chain CRF

» Chain CRF could be done using dynamic programming

1 .
Zi) P (Z NiFj(y, ) Fi(y,z) = ; FiWiet,vi, . 0),

J

p(ykcaA) —

» AssumeY €Y
» Naively doing could be intractable: nY!
* Define a matrix {M;(x)|7 = 1,...,n + 1} withsize |J x )|

M;(y' ylz) = exp (> A fi(y',y. . 1))

J
n-+1

1
p(ylz, A) = m M;(yi—1,y:|T)
72—=1
n—+1
Z@) = |]] Mz‘(w)}
=1 start,end
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» By defining the following forward and backward parameters,

a; (a:)T = ;-1 (SB)TM@ (ZL‘)

(ylz) 1 if y = start
Q xr) =
oY 0 otherwise




Parameter Learning: Chain CRF

O

» By defining the following forward and backward parameters,

Bi(x) = Miy1(x)Biv1(x) sz'(ﬂl')T — sz'—1(~’13)TMz'(33)

1 if y =sto 1 if y = start
Bri1 () = P (ylz) = .
0 otherwise

0 otherwise




Parameter Learning: Chain CRF

O

» By defining the following forward and backward parameters,
/87,(33) — z—|—1( )/87,4—1(33) quj(m)T = Clii_l(zl?)TM@'(iB)
{ 1 if y = start

0 otherwise

if y = sto
6n+1(y|w){1 y = stop ao(ylz) =

0 otherwise

Z(x) = icgr(i) Z(x) = Bo(%o)
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» The inference of linear-chain CRF is very similar to that of HMM

» We can write the marginal distribution:

i1 (Y |z) Mi(y', y|x) Bi (y|x)

Yioi =y, Yi=ylz® \) =
p( 1 Yy, ylm ’ ) Z(.’L‘)

» Solve Chain-CRF using Dynamic Programming (Similar to Viterbi)!




Inference: Chain-CRF

» The inference of linear-chain CRF is very similar to that of HMM
» We can write the marginal distribution:

ai—1 (Y |2)M; (v, y|x)Bi(y|x)

Yioi =y, Yi=ylz® \) =
p( 1 Yy, ylm ’ ) Z(.’B)

Solve Chain-CRF using Dynamic Programming (Similar to Viterbi)!

1. First computing a for all t (forward), then compute S for all t (backward).

2. Return the marginal distributions computed.

3. Run viterbi to find the optimal sequence N. | y|2
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Parameter Learning

» Given the training data, {X(i) ,y@ } | we wish to learn parameters of the
model.

» For chain or tree structured CRFs, they can be trained by maximum
likelihood

» The objective function for chain-CRF is convex(see Lafferty et al(2001) ).

» General CRFs are intractable hence approximation solutions are necessary
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* Given the training data, {x(Z Ly (D) } &V we wish to learn parameters of the
mode.

» Conditional log-likelihood for a general CRF:
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Parameter Learning

* Given the training data, {x(i) Ly (D) } &V we wish to learn parameters of the
mode.

» Conditional log-likelihood for a general CRF:

k

1
L(A) = Z log Z(af}(k)) T Z)\ij(y(k)am(k))
j —

OL(N)
O\

= Estv.x) [Fj(Y, X)] =) Epyiom a) [Fj(Y’ m(k))]

Empirical
Distribution

k

Hard to calculate!

» Itis not possible to analytically determine the parameter values that
maximize the log-likelihood — setting the gradient to zero and solving for A
does not always yield a closed form solution. (Almost always)
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Parameter Learning

Aoc max, L(A; y|x)ocmax IogZp(y|x A)
A <—/l,+a.V2£(/1,y|X1)

1+1
Until we reach convergence

|£( |+1,y|X)—£()11;y|X)|<€

» Or any other optimization:
* Quasi-Newton methods: BFGS [Bertsekas,1999] or L-BFGS [Byrd, 1994]

General CRFs are intractable hence approximation solutions are necessary

Compared with Markov chains, CRF s should be more discriminative, much
slower to train and possibly more susceptible to over-training.

» Regularization: 10|
» ols aregularization parameter Fojectie(60) = (Y [X) = 252
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Training ( and Inference): General Case

» Approximate solution, to get faster inference.

» Treat inference as shortest path problem in the network consisting of
paths(with costs)

» Max Flow-Min Cut (Ford-Fulkerson, 1956 )
» Pseudo-likelihood approximation:

» Convert a CRF into separate patches; each consists of a hidden
node and true values of neighbors; Run ML on separate patches
» Efficient but may over-estimate inter-dependencies

sorry about
that, man!

» Belief propagation?!
» variational inference algorithm

« itis a direct generalization of the exact inference algorithms for
linear-chain CRFs

» Sampling based method(MCMC)
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CRF frontiers

» Bayesian CRF:

» Because of the large number of parameters in typical applications
of CRFs

» prone to overfitting.
» Regularization?
» Instead of y* = maxy p(y|x; 0) ]
- y* = maxy [ p(y|x; O)p(0|x),yM .. xV) y(N)dg
» Too complicated! How can we approximate this?
» Semi-supervised CRF:
» The need to have big labeled data!

» Unlike in generative models, it is less obvious how to incorporate
unlabelled data into a conditional criterion, because the unlabelled
data is a sample from the distribution P(X)
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Some applications: Part-of-Speech-Tagging

O

» POS(part of speech) tagging; the identification of words as nouns, verbs,
adjectives, adverbs, etc.  Students need another break

noun verb article noun
o CRF features:

Transition vk y, = kand y,,=K

Word Vk,wy, = k and x;=w
vkwy, = kand x;, ,=w
vk,wy, = kand x;,,=w
Vk,w,w’y; = k and x,=w and x,_,=w’
Vk,w,w’y; = k and x,=w and x;,,=w

5

Orthography: Suffix Vsin {“ing”,”ed”,”ogy”,”s”,”ly”,”ion”,”tion”,
“ity”, ...} and Vk y;=k and x; ends with s
Orthography: Punctuation Vky; = k and x; is capitalized

Vky, = k and x; is hyphenated
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Is HMM(Gen.) better or CRF(Disc.)

If your application gives you good structural information such that could be
easily modeled by dependent distributions, and could be learnt tractably, go the
generative way!

Ex. Higher-order emissions from individual states
“unobservables”

“observables”

A A T C G

Incorporating evolutionary conservation from an alignment: PhyloHMM, for which
efficient decoding methods exist:

O >O >O > }states
}target
genome
“informant
” genomes
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