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Problem Description

 Given     (observations), find      (predictions)

 For example, 

X Y

{ , , ,...}

{ , , ,...}

X temperature moisture pressure

Y Sunny Rainy Stormy






Might depend on 
previous days and 

each other

Might depend on 
previous days and 

each other
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Problem Description

 The relational connection occurs in many applications, NLP, 
Computer Vision, Signal Processing, …. 

 Traditionally in graphical models,

 Modeling the joint distribution can lead to difficulties 

 rich local features occur in relational data,

 features may have complex dependencies, 

 constructing  probability distribution over them is difficult

 Solution: directly model the conditional,  

 is sufficient for classification!

 CRF is simply a conditional distribution with an 
associated graphical structure

,( )p x y |( ) ( )p p y x x

( )p x

|( )p y x

|( )p y x
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 Generative Model:  A model that generate 
observed data randomly

 Naïve Bayes: once the class label is known, all 
the features are independent 

 Discriminative: Directly estimate the posterior 
probability;  Aim at modeling the 
“discrimination” between different outputs

 MaxEnt  classifier: linear combination of feature 
function in the exponent, 

Both generative models and discriminative models describe distributions over (y , x), but 
they work in different directions.
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Markov Random Field(MRF) and Factor Graphs

 On an undirected graph, the joint distribution of 
variables    
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Markov Random Field(MRF) and Factor Graphs

 On an undirected graph, the joint distribution of 
variables    

 :Potential function

 Typically :  

 :Partition function

 Not all distributions satisfy Markovian properties

 Hammersley-Clifford Theorem

 The ones which do can be factorized
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Sequence prediction

 Like NER: identifying and classifying proper names in text, e.g. China as 
location; George Bush as people; United Nations as organizations
 Set of observation,                 
 Set of underlying sequence of states, 

 HMM is generative:

 Doesn’t model long-range dependencies
 Not practical to represent multiple interacting features (hard to model p(x))
 The primary advantage of CRFs over hidden Markov models is their 

conditional nature, resulting in the relaxation of the independence assumptions
 And it can handle overlapping features 

Transition probability

Observation probability
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 If                           , and                        , ;             

and      are neighbors 

is a CRF, if  



the MRF

fixed, 

observable, 

variables X (not 

in the MRF)

the CRF

Y

X

Note that in a CRF we do not explicitly model any direct relationships 

between the observables (i.e., among the X) (Lafferty et al., 2001).  

Hammersley-Clifford does not apply to X! 
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Note that we are not summing 

over x in the  denominator

( , )c c y x

• The cliques contain only unobservables (y); though, x is an argument to c

• The probability PM(y|x) is a joint distribution over the unobservables Y
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Chain CRFs vs. MEMM

 Linear-chain CRFs were originally introduced as an improvement to MEMM

 Maximum Entropy Markov Models (MEMM)

 Transition probabilities are given by logistic regression

 Notice the per-state normalization

 Only dependent on the previous inputs; no dependence on the future states. 

 Label-bias problem
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Inference

 Given the observations,{xi})and parameters, we target to find the 
best state sequence

 For the general CRF: 

 For general graphs, the problem of exact inference in CRFs is 
intractable

 Approximate methods !  A large literature …
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 Dynamic Programming: 

 Forward
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 Dynamic Programming: 

 Forward

 Backward

 Viterbi
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Inference: Chain-CRF

 The inference of linear-chain CRF is very similar to that of HMM

 We can write the marginal distribution:

 Solve Chain-CRF using Dynamic Programming (Similar to Viterbi)!

 1. First computing α for all t (forward), then compute β for all t (backward).

 2. Return the marginal distributions computed. 

 3. Run viterbi to find the optimal sequence  
2. | |n 
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 Inference

 Training

 General CRF

 Some notes on approximate learning

 Applications
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Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 

 Conditional log-likelihood for a general CRF:

 It is not possible to analytically determine the parameter values that 
maximize the log-likelihood – setting the gradient to zero and solving for λ
does not always yield a closed form solution. (Almost always) 

Empirical 
Distribution

Hard to calculate!



Parameter Learning



 















Parameter Learning

 This could be done using gradient descent













1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x



Parameter Learning

 This could be done using gradient descent













1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x

1 . ( ; | )i i y x       



Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 











1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x

1 . ( ; | )i i y x       



Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 











1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x

1 . ( ; | )i i y x       

1| ( ; | ) ( ; | ) |i iy x y x     



Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 

 Or any other optimization: 

 Quasi-Newton methods: BFGS [Bertsekas,1999] or  L-BFGS [Byrd, 1994]







1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x

1 . ( ; | )i i y x       

1| ( ; | ) ( ; | ) |i iy x y x     



Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 

 Or any other optimization: 

 Quasi-Newton methods: BFGS [Bertsekas,1999] or  L-BFGS [Byrd, 1994]

 General CRFs are intractable hence approximation solutions are necessary





1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x

1 . ( ; | )i i y x       

1| ( ; | ) ( ; | ) |i iy x y x     



Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 

 Or any other optimization: 

 Quasi-Newton methods: BFGS [Bertsekas,1999] or  L-BFGS [Byrd, 1994]

 General CRFs are intractable hence approximation solutions are necessary





1

max ( ; | ) max (log | ; )
N

i

y x p   


   y x

1 . ( ; | )i i y x       

1| ( ; | ) ( ; | ) |i iy x y x     

Compared with Markov chains, CRF’s should be more discriminative, much 

slower to train and possibly more susceptible to over-training.



Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 

 Or any other optimization: 

 Quasi-Newton methods: BFGS [Bertsekas,1999] or  L-BFGS [Byrd, 1994]

 General CRFs are intractable hence approximation solutions are necessary

 Regularization:

  is a regularization parameter
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Compared with Markov chains, CRF’s should be more discriminative, much 

slower to train and possibly more susceptible to over-training.

      



fobjective()  P (y | x)
|| ||2

2 2
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Training ( and Inference): General Case

 Approximate solution, to get faster inference.

 Treat inference as shortest path problem in the network consisting of 
paths(with costs)

 Max Flow-Min Cut (Ford-Fulkerson, 1956 )

 Pseudo-likelihood approximation: 

 Convert a CRF into separate patches; each consists of a hidden 
node and true values of neighbors;  Run ML on separate patches

 Efficient but may over-estimate inter-dependencies

 Belief propagation?!

 variational inference algorithm

 it is a direct generalization of the exact inference algorithms for 
linear-chain CRFs

 Sampling based method(MCMC)

sorry about 

that, man!
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CRF frontiers

 Bayesian CRF:

 Because of the large number of parameters in typical applications 
of CRFs 

 prone to overfitting.

 Regularization?

 Instead of 



 Too complicated! How can we approximate this?

 Semi-supervised CRF:

 The need to have big labeled data! 

 Unlike in generative models, it is less obvious how to incorporate 
unlabelled data into a conditional criterion, because the unlabelled 
data is a sample from the distribution ( )p x
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Some applications: Part-of-Speech-Tagging

Students need another break

noun verb article noun

 POS(part of speech) tagging; the identification of words as nouns, verbs, 
adjectives, adverbs, etc.

 CRF features: 

Feature Type Description

Transition k,k’ yi = k and yi+1=k’

Word k,w yi = k and xi=w
k,w yi = k and xi-1=w
k,w yi = k and xi+1=w
k,w,w’ yi = k and xi=w and xi-1=w’
k,w,w’ yi = k and xi=w and xi+1=w’

Orthography:  Suffix s in {“ing”,”ed”,”ogy”,”s”,”ly”,”ion”,”tion”,
“ity”, …} and k yi=k and xi ends with s

Orthography:  Punctuation k yi = k and xi is capitalized
k yi = k and xi is hyphenated
…



Is HMM(Gen.) better or CRF(Disc.)

 If your application gives you good structural information such that could be 
easily modeled by dependent distributions, and could be learnt tractably, go the 
generative way! 
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Is HMM(Gen.) better or CRF(Disc.)

 If your application gives you good structural information such that could be 
easily modeled by dependent distributions, and could be learnt tractably, go the 
generative way! 

 Ex. Higher-order emissions from individual states

 Incorporating evolutionary conservation from an alignment: PhyloHMM, for which 

efficient decoding methods exist:

“unobservables”

“observables”

A    A    T    C    G

states

target 

genome

“informant

” genomes
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